Light side of compactness in Lebesgue spaces: Sudakov theorem
نویسندگان
چکیده
منابع مشابه
The Sampling Theorem in Variable Lebesgue Spaces
hold. The facts above are well-known as the classical Shannon sampling theorem initially proved by Ogura [10]. Ashino and Mandai [1] generalized the sampling theorem in Lebesgue spaces L0(R) for 1 < p0 < ∞. Their generalized sampling theorem is the following. Theorem 1.1 ([1]). Let r > 0 and 1 < p0 < ∞. Then for all f ∈ L 0(R) with supp f̂ ⊂ [−rπ, rπ], we have the norm inequality C p r ‖f‖Lp0(Rn...
متن کاملOn isomorphism of two bases in Morrey-Lebesgue type spaces
Double system of exponents with complex-valued coefficients is considered. Under some conditions on the coefficients, we prove that if this system forms a basis for the Morrey-Lebesgue type space on $left[-pi , pi right]$, then it is isomorphic to the classical system of exponents in this space.
متن کاملALMOST S^{*}-COMPACTNESS IN L-TOPOLOGICAL SPACES
In this paper, the notion of almost S^{*}-compactness in L-topologicalspaces is introduced following Shi’s definition of S^{*}-compactness. The propertiesof this notion are studied and the relationship between it and otherdefinitions of almost compactness are discussed. Several characterizations ofalmost S^{*}-compactness are also presented.
متن کاملCompactness in apartness spaces?
In this note, we establish some results which suggest a possible solution to the problem of finding the right constructive notion of compactness in the context of a not–necessarily–uniform apartness space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica
سال: 2017
ISSN: 1239-629X,1798-2383
DOI: 10.5186/aasfm.2017.4209